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ABSTRACT

A computationally feasible and strongly consistent method is considered for
estimating the coefficients of
X, sy i e ' GRig i Sl UL
oty T M e th-p t
The steady-state solution is observed in the presence of nonwhite noise, and the
system is driven by a certain selected superposition of sinusoids, u,. When the noise
is white, the estimates are shown to possess an asymptotic normal distribution with

covariance matrix which depends on the coefficients only via the values of

p
h e 12
1) e |

k=0

evaluated at the input frequencies.
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1. INTRODUCTION

We observe the steady state solution of a plh order difference equation in the pre-
sence of additive noise. The deterministic input sequence is at our disposal, up to an
unknown gain. Corresponding to a superposition of sinusoidal inputs, we exhibit an
estimate of the p+1 parameters having the following properties.

(i) On-line computation of the estimates can be done recursively in the incoming
data by operations which entail only first-order storage requirements. (ii) As the
observation time increases to infinity the estimate is strongly consistent under very
weak conditions on the noise process, which include stationarity but not the existence
of a power spectrum. (iii) The standardized estimates tend to joint normality with a
covariance matrix which is relatively easy to calculate when the noise is white. If,
in addition, the noise is Gaussian, the estimate has minimal (generalized) variance.

The initial step is "naive” least squares, i.e. solving normal equations (and hence
(i)). Simple instantaneous nonlinear operations are then performed on the least squares
solution. The result is mapped by a fixed matrix into the estimate of the ratio of

coefficients to gain.
2. THE MODEL AND ESTIMATE

Corresponding to a given deterministic sequence {ut}, let {Xt} satisfy
x =0, x +t---+4+0 x +Kut (t=...,-1,0,1,...)

for some input gain K # 0. We will assume stability, i.e. that the p roots of the

characteristic equation

-1
Wag B e an s w2
1 p

are cach in modulus less than unity. We will also assume, but only for the sake of
simplicity, that the roots arc distinct.

’r = S + t_ 1’ :!, - ,n, N



where {gt} is some zero mean stochastic process, and suppose that the regression se-
quence was arbitrarily initialized in the remote past, In statistical terminology we

are faced with a particular nonlinear regression problem:
Koy = (KGO s 1B
t t( 1 p)

is known up to the values of p+1 parameters to be estimated.
The input. To estimate K and 01, GEal 0p we distinguish between odd and even

values of p+1, and accordingly take for the input

q
— +\/ cosw. t if p=2q
b gy J
=
0 =
q )t
Zcoswt+— if p=2q+1
L“/Z - N2

The angular frequencies

0<w1<-~- <wq<7r

are to be chosen. Thus, the input is 1/N2 when p=0, giving the constant regression
= . t
K/N?2 for the trivial case of no 0's. The input is 1/N2 + (1) /N2 when p=1,

1/N2 + cos w,t when p=2, and so on.

il
We present the estimation procedure for an even number of parameters. After
doing so, we indicate the modifications to be made for an odd number, as well as for

the case when the gain is known. Thus, in what follows,
ptl=2q+2

for some integer q = 0.



Step 1. Choose q distinct frequencies interior to (0, 1), and define

o . e ]
h! = [ — , coswyt, sinwt, ... ,cosw t, sinw t,~——
t Lo : Np)
for t=1,2,...,n with n > p. Define matrices
H =[h ho] B =(H H ) !
n bl n nn

where prime denotes transposition. Let —};n be the column vector of the first n

observations yi, s yn, and let

It is known that successive vectors so defined (the solutions of normal equations for

increasing sample size) satisfy the difference equation

) (n=dy 2is o 5 @, =0)

= = !
(pn @ -1+kn(yn hn(p 0

n n-1

where the gain vectors can be computed recursively without matrix inversions. We
are not interested in the details of such computations - only that they can be done.
Step 2. At each n, then, we have a (p+1) - vector whose components (for

reasons which will become clear) we label as

b

m () . (n) m () _(n) |
0 ,a1 ,b1 ,...,a(l ,bq aq_H 1

! = l a
wn L
From it we compute a new vector

pr=|

(n) C(n) (m) (n) |
n | 0 | :

’d1 ’---)q ’ q q+1-



by means of the relations

2

W

il
j 2 2
<afn)\ IS (bgn)\
J }

(™

dm_ J
J <a§n)\2+ <b§n)\2
J R

S j= 1 ° o0 y i
These hold for j=0, 1, »q,q+1 with b q+t

(n) _,(m) _
0 = o) = Q.

Step 3. Next form the p+1 by p+1 (p=1,3,...) matrix

1 1 1
1 cosw, cos 2w 1

0 sinw, sin 2w1

1 w cos 2w
cos q S q

0 sin wq sin 2wq

Li =% +1

This matrix is nonsingular, and we can compute

COSs pw 1

sin pwy

cos pr
sin pwq

+4




- _
y(n)
0
n
o
-1
P . =M
vn zpn
y(n)
P
for n > p.
Step 4. The estimate of K based on the first n observations is 1/y§)n), and that of
Ok is -'yl(\_n)/ 'yén) (k=1,2,...,p). If the original system is rewritten
YoXe TV Xeg Tt e %

and it is the v¥'s which are to be estimated, then the procedure terminates with Step 3.

Odd number of parameters. When

pti=2q+1 (q=0)
we modify the preceding by

(i) deleting the last entry of ht in Step 1,
(ii) deleting the last entries of @ and zpn in Step 2,

(iii) deleting the last row of M in Step 3,

and leave everything else unchanged.

Choice of input frequencies . The inversion of M is obviated when we use the par-

ticular angular frequencies

2mj .
iy (=020 @)=



For p+1 = 2q+2, put

—~ —

1 0
p+1
2
(Dl
S:
2
p+1
1
| 2 pd

1
The matrix S° M is orthogonal, so it is any easy matter to solve the equations in

Step 3. We get for k=0,1,...,p
(n) q K
() _ 2 N/ m (-1 (n)
Yk p+1 + L/ \c Cos kw A dJ sin kwj o morw Lq+1 :

For p+1 = 2q+1 the last term is dropped.

Known input gain. When K is known, we replace the input u, by Ut/K and every-

where read p for p+1. In Step 3 the first column of M is deleted, and the estimate

1 -1
of ()k is the k ]component of -M ¢n e=1; 2. ..; 0y 1.0 yén)E 15

3. THE ASYMPTOTIC BEHAVIOR OF THE ESTIMATES

The following two lemmas preceding the theorems of interest contain known re-
sults, and are included only to make the report self-contained. Proofs of the lemmas

and theorems are given in Sec.4 and Sec. 5 respectively.

Lemma 1. Let 91, N S5 ()p be any real numbers such that the roots
7\1, D Ap
of 4
2R g B s =
g =A" -0, op 0



are in modulus less than unity and distinct. Let {Vt} be any bounded number se-

quence. Then the steady state solution of

t i | p t-p t
is .
Xt B s Bn Vt-n
n=0
where
S "
= [0 =
Bn k)]< ak T o
k=1 i k
ek

Lemma 2. For the particular input
Vt = Kcoswt (K#0, w arbitrary)
the conclusion of Lemma 1 reads

xt = a3 coswt + bsinwt

where
L4
. =Z'ycoskw
’ er2 k
= k=0
; P
—-Z'y sin kw
a +b2 8
k=0
and
1 P 2
v, = Fe & =2 =15 2, 50 o P



Theorem 1, In the notation of Sec. 2 let

-
0" =[K, 60,5, op]
n
1 y(1 ) y(n)
il e Rl R J
n n n n
YO YO YO
with p+1 even or odd as the case may be. Then
P{lim 0 =0} =1
n n
for any distinct interior points @,,..., wq of (0, m) and any 0 mean stochastic process
{gt} for which

b Fuafn] =% = O/

as h — « for some € > 0,

Theorem 2. Let {gt} be a sequence of independent zero mean random variables

. 2+ 6
with common variance ¢%, and suppose sup {|5t| <= for some 6 > 0. Choose
t

O=w0<w1<---<wq<wq+1=n,

which are otherwisc unrestricted.

(a) The (p+1)-vector \/H(yn-y) has a large sample normal distribution about the
origin with covariance matrix, for p+1 = 2q+ 2 even,

2

- -1
Z=20 M P2M 1

P =diag[p0,p1,p1,...,pq,pq,pqﬂ].

M is given in Step 3, and the entries of P are



ikw .
e )

K (G=0,1,...,q,9+1)

\‘\’\
p; = | 'R
=0

>

(b) The covariance matrix of the asymptotic normal distribution of '\/H(On- 9)

is
A B A
where = | .
K___+___ Oi_ 92 o ()p
= -K ;
0 ! I
- J

and I is the pXp identity. The entries of P are also expressible as

p

b ikw jw
1 il 2 1 )
p.=—l1-29€ J| =— lgte )| {E=E Ya
j K2 k K.?. p
k=1
i.e. in terms of the coefficients 01, o Op or the characteristic roots 7\1, I, 7\p.

(c) For p+1=2q+1 odd, we delete the last row of M and the last entry of P

under (a).

Corollarz. For

= EJ— il =
wj i (4= 4.9 el

the covariance matrix £ in Theorem 2(a) becomes a Toeplitz matrix with entries

q

20 2 % 2 2 b-a N
g . = > [p0+4 ij cos(b-a)wj+pq+1(—1) ;I (a,b=0,1,...,p).

=t



The generalized variance of the asymptotic distribution of '\/n(yn-y) is

RN ol U YRR o
2 ‘_,—‘,\ p+1 PoPy # pq+1’
and that of \/E(on- 0) is
PR N ol | ; 2
40 \ 1 2 2 2 4 2 4.2 2
U>YD =1 ot
det (A7 = A) 4<p+1/ = (K'pg)” (K pp™ -+ (Kp )" (K'p )

2
Each of the factors K pj depends only on the 6's, and is no larger than 4P,

Confidence intervals free of unknowns. We can consistently estimate pj by

p(n)_ 1
j 2 )
<a§n)\ + <b.(n)\
b/ e

(n) _ (@ _ o

‘=091)---9 ’ +1)b
G 44 0 q+1

(n) (n) (n) (n) (n) (n)]

resulting from Step 1. Letting Pn be the diagonal matrix [pO PPy Py e pq ,pq .qu

the vector of p+1 = 2q+2 random variables

P M~n(y_-v)
n n
/ “ ‘
2 v 2
- [
n-1 Z (yt ht qon)
=4

has a standardized multivariate normal distribution in large samples.

Again, it is only necessary to delete all terms involving pq dh when

pt1=2q+1, as well as the last row of M.
K known. The matrix Z is now pXp with 2q+2 is redefined as p when it is even.
Under Theorem 2(a) the first column of M is (has been) deleted, and in the definition

of pj we set o= 1 and yk =-0  (k=1,2,...,p). Under Theorem 2(b), we set-A

k
equal to the pXp identity matrix, and K equal to unity in the formula for pj. Thus, in

10



the Corollary, the selected frequencies are w_ = 27j/p, In the formula for o b the
2 ) .

multiplier becomes 2(72/p and a,b runs over 1,2,...,p.

Remark. When the independent errors are normal, ()n is the Maximum Likeli-
hood estimate of 0 for every n. This is true since the Least Squares estimate @ of
¢ becomes the Maximum Likelihood estimate, and the Maximum Likelihood estimate

of any 1-1 vector-valued function is the function of the Maximum Likelihood estimate.
4, PROOF OF THE LEMMAS

: th :
Proof of Lemmma 1. In the standard fashion we write our p  order equation as a

first order vector equation:

t t-1 1
where
[~ ] 4 ] [/ .
-1 fi_ o _Op_-1_,_ "_Q
. ! ; 0
; — a e = 0 =
t-1 1 1 | )
[
X : !
L 0 0
S = - - - ! .

-— t_; -
x=e;x=e’lex+\,[3v

where

g =gt o"c
n

We first use the assumption of distinct roots to evaluate ,Bn.

11



Throughout A denotes an indeterminate complex scalar. Define the unimodular

(i.e. determinant = 1) matrix

9 -4

R TR .

-2
1A AP
EQ\) =
0

T %

0 1 i

Then
E) = Ei(}\) E2(>\) . Ep-i(}\)

where Ej(?x) is the identity matrix with A added into the (j,j+ 1) position. Right-

multiplication of any pXp matrix A = [ai, e .ap] by Ej(?\) adds A times the jth

: st
column to the j+1 . Consequently,

Ny B F a-AFa Az,...,a +a 1>\+---+>\p_1]

AE(?\)=[ai,a2+a 3 9 " p* p-

1

where the successive columns are A-polynomials with vector coefficients. The in-

verse of the operator,
-1
EQ) = Ei(A) + EZ(A)+- o= +Ep_1(>\),

exists independently of A. If we replace A by the characteristic matrix of © we find

B |
g, g, ... gp_1(>\): gp(A)

(O-AT)EQ) = - = F(\)

12



wherein
sy eg il laiisg nem (G=1,2,...,p)
J L L
and g, is g in the statement of the lemma. Since | EQ)|=1, ©-A1 and F(A) are

rank equivalent, and the characteristic polynomial of © is simply
+1
lo-a1|=|FQ) | = (-2F g, -

Regarded as a function of A, the characteristic matrix has full rank unless A coincides

with one of the roots

of gp(7\) = 0.  In this case, O - Ajl has rank p-1. Thus, if 7\j is repeated there is
only one nonzero vector solution to the homogeneous equation (6 -Ajl)x =0. Consequent-
ly, © is equivalent (more properly, collinear) to the diagonal matrix Aof its eigen-
values if and only if the eigenvalues are distinct. This is our assumption.

Since © is not normal, i.e. does not commute with its transpose, two sets of

eigenvectors are involved. To each A belonging to the spectrum A, ..., Ap there

1

, unique up to a multiplicative constant,

are distinct nonzero vectors 4 =4 A and r =r7\

satisfying
Oy =1 Or = Ar .

We use the "left-right" nomenclature relative to ©. Let

be the matrices of these columns generated as A assumes the p spectral values.

Then

= ol - SRR = 5 Ak @
OR 9[r1,...,rp] [r1, rp] [7\11‘1 -

= RA

13



and

QUL =LA or 18 = A
Thus, (without restriction on the eigenvalues)
A(L’R) = L’OGR = (L'R) A

th
where L’R has the inner product &,i’rj for ij entry. Interms of elements, the

statementthat L’ R commutes with A is
(A -A)A'r = 0.
1 ] 1]

Thus, for distinct eigenvalues, J&i is perpendicular to rj for all i # j (and the converse

is also true). The two vector sets are called bi-orthogonal, and

d11
0
d22
L'R=D = d, =4,
. 1] J ]
0 d
i R
We then have, since | D|#0,
-1
O = RAR

1

(RD™2)ARD %) ,

and the proper normalization for ij and rj is ”1/\./djj s

We now compute L, R and D as functions of the eigenvalues. We have

14



-1
(©r-alL. = EQ)  FQ)'L .
i j i

By definition Xj makes the left side the 0 vector, and hence F()\j)'fj = 0. These

equations are

-g,0) |1 1]
1
Yoy g,M)
-g,(A) 1 .
Y o
| #2Y;
| 0
i
-gp_1(7\j) | 1
0T TITe ST T o] [y

because gp()\) =0 for A= Aj. The vector equation Grj = A1, is

i
_ — I
o6 6 .0 g 13 »
12 p-1 4 p ] ]
0 -5 =
! 0 AP AP
1 ] J B J
|
|
n
L 1 A

The first of these says Aj is a root, and the balance are redundancies. Thus,

ot n =
' [\
{ J

p-2
A A,
v o= | B j) E= 4]
J i

+ e 1

| g, 4 % -

15



R is a Vandermonde matrix with

[R] = 0P T o -2,

i<}
To compute the normalization
p-1
pe N p-k-1
d. =Lr =X i 2 (AN
1) 1] ] 74y, 8k 7]
k=1

we derive a A-identity. If we multiply

k
.k N\, k-i
gk(A) = A Z 612\
i=1

p-k-1 : '
by A and sum over k we have

p-1 p-1 k
. p-k-1 p-1 \ \ﬂ p-i-1
= -1 - )
ng(m -t - ) > 6,
k=1 k=1 i=1
p-1
- - A p-k-1
pPA A Zﬂk(p k)A
k=1
: p-1 : :
Moving A to the left side we obtain
p-1 p-1
p-1 Z p-k-1 d p_\ p-k
o2 = — - f e
A gk(A)A Y A /, k?\ +L:’
k=1 k=1

We can set the arbitrary constant equal to -6 There results

16



p-1 \‘ p-k-1 _ d
+ ¥ = — ¢
A u&k(x)x = p(}\)
k=1
P ¥
_d ) _ o
—d}\H(}\ N = L (a=n)
==, k=1 i #k

In particular, for }\=}\j ,

d. =T (a-2) .
1] i J 1

o

i

To find the dependence of 'Bn on the eigenvalues we use L'6 = AL’, We have

’
7\&1

AL

n
1
L, ’
22
L'e" = AL =

A 47

Since the leading element of every &J, is 1,

L’ene =

-1 =4
But L’R =D implies L’ =RD , so

17



Since eaR is the first row of R,

n
7\1
il 3 p-1 p-1 -11 "
eie e, [7\1 Ap ] D . ,
}\n
- p -
and therefore
Jolett |
P )P P
Z L - Za.x’? .
d I3
: J=1

The vector « satisfies

In particular, 01 +-+++ a =1, as should be since ’80 must be unity.

We now use the assumption that

max l AL l <1
1 Ej =p J
where l | denotes modulus. For any pXq matrix A with elements aij’ define the

norm

18



I all = Z Z

which generalizes length. Then

' n-— < | r n—
|619 xol i|€1|| e XOH
o TR (=
=< le
(Kl ||x0H
But
. ‘ =4 2 2n'
1M = RN I A IR = const. & aZheeo 220
—- 0 as n— «,

Translating the origin back to t =-«, this establishes the formula asserted in Lemma 1.

Proof of Lemma 2. For g = Kcoswt the steady state solution is, according to

Lemma 1,
X, = (Ka')cos wt + (Kb')sinwt
where
= Z,Bncos nw = a/K
n=0
b’ = Zanmnw =a/K
n=0
Setting

P
= Z Bkcos kw

k=1

p
Z Bksin kw ,

k=1

19



the assertion to be proved is clearly equivalent to

al

=A
) 2
a’ +b’
bl
=B
2
a’ -f-b’2

This in turn holds if
(AtiB)a’-ib’) = 1,

since then

14 st ! 14
By e o S U, RPN,
a’- ip’ 2 2 2 2 7 2
all b a’ +bf a' +b’
Putting
iw
zZ=e
we have
{1
g -k -p
A+iB=1-)>86 2z =2 z)
L.k gp(
k=1
and
a’ -ib’ = ZB z !
n
n=0
_ 2 P y
n =g _ n
'Z <Zak7‘k >Z _Zak Z(Ak/z) :
n=0 k=1 k=1 n=0
But |7\k/z| = |7\ki < 1 by hypothesis for all k, so
-1
3 - !
a’ -ip’ = ) « with ¢ = ——————
L, k z- k )
k=1 lk H (Ak Aj)
j £k

20



It thus suffices to prove

P o
‘ -1
g (2) \/ <= P
p /-Ak
k=1
p
Since g (2) = ﬂ (z-1)), the left side is
p 1=4 J
P P Z= A
Y Nk
= o - = DN
L= ) e [ N =) A il Wy
k=1 j#k k=1 e J
P
- p_1
Ak Lk(z)
k=1

Each of the summands is a (Lagrange) polynomial of degree p-1 in z, so we must

have

p-2
+c.z +rre 4+ .
2 p

-1
L(z) = cizp

The coefficients are determined by the values of L at any p distinct points. We of

course use the characteristic roots, since

1 if k=i
Lk(Ai) =
0 if k#i.
Thus
p-1 .
L(>\i)=>\i (f=14, 2,0 vnsP)«

This shows c1=1and C_ = oo

= i = p-1
9 cp 0, i.e. L(z) =z .

21



9« PROOF OF THE THEOREMS

Proof of Theorem 1. It clearly suffices to consider either an odd or an even

number of parameters, and we choose the latter. Thus, throughout the proof,

p+1=2q+ 2 (q = 0).

Furthermore, we set

According to Lemma 2, then, the output which results from the input

] a
ut=—cosw t Z cosw t +———cosw Ht
N2 NG 4
j=1
is
q\
1
X, :F (aocos wot + bosinwot) + Z (ajcos wjt + bjsinwjt)
2 A
j=1
PR X t+b i £
- (aq+1coswq+1 e squH
— h!
ht P
where ht is as in Step 1 and
r =
) [aO, an, by, ,bq aq+1]
Furthermore,
a P
T Y, cos kw
i a2 +b2 e
j k=0
]_0’ 1’ ’qu+1
b 2
d, = -—>— = 27 sinkw
L a2+b &
j k=0

22



which imply b =b = 0. Putting

0 qti
o = . = S
y [c.(), Cy di,...,cq, dq’ Cq+1]
P =
Y [vo,vi,...,vp],
where Yo = 1/K and yk = - ok/K (k=1, 2,...,p), these equations are
$ =My

with M as given in Step 3.
Let E be the column vector of the first n noise realizations. We have a data
n

model which is linear in the components of ¢,
y =H o+ .
n n n
The estimate resulting from Step 1 can be written ¢ =9 +B Hngn, or

Ao -@)=HE_ (A =B ).

n
For the p+1 by p+1 matrix An= Z htht’ we have

t=1

Z8



-

o1 1 1 1 (-1)"
% —_-cosw1t T—smwlt T—coswzt eor  —sinwt ~—
N3 N2 N2 N2 4 N2
coszw t CosW tsinw t cosw tcosw .t Ccosw tsinw t w (-1)t
. s . 1 PR 0s 1blnq cos 1t
t
2n sin2w t sinw tcosw_t sinw tsinw t sinw ot
ZA ==X 1 Rt 2 17 g b
0L N Ny 2
2(_0 t
cos @,
(symmetric)
o -
Sin W t sinw t——
]
1
- 2 i
From the identities
n
) COS2At = SH?M cos(n+ 1A
) A
t=1 .
(A # a multiple of )
n
T sinnA .
Sin 2At = — sin(n + 1)A
in
t=1

it follows for n — = that

24




1'1\ \

2\
— ) COSA,tcosA.t
n/ 1 2
t=1 1
= 0O(- = = i
P O(n) for all 0 7\17\2 7rW1th7\17£7\2
n
-Z-Z sinA tsin At
= sin 1sm 9
t=1 /
n
2>ﬁ 2.t )
- Cos A
11 i
t=1 {
>=1+O(—) forallO <X <7
i n
2N 2
= sin 7\t
n

n
2 Y 1
—_ i = —_ &= =
= cos7\1tsm7\2t O(n) for all O 7\1,7\2 T
t=1
Since w1, AT 'wq were chosen as interior points of (0, ), we therefore have
25 =kl
n n n n

for some matrix E_ whose elements remain uniformly bounded as n — <. (To get the
n

identity matrix in the limit was our reason for using the amplitude 1/N2 for the first

and last input.) Thus,
1 2 -
A+=8 )Ylg ~gpr==H §
n n n n nn

and the estimate ¢ will converge to ¢ in the same probabilistic sense that the vector
n

25



2
Dk

=L §n converges to the zero vector.

A
The p+1 components of _ﬁH §{ are arithmetic means

=N I

=21 &

inw
Zsm 1t§t

t=1

n

Z cos wqtgt

=1

=N

L 4

=T !
gt

sinw t
q gt

il

n
AR
el

t=A

~
B

each of which has zero expectation. For any average of the form

n

S-1Z wt
S cos §t

t=1



we have

1
= coswtcoswn g
n/y n-t

C
( Sn cos wn&n =
By hypothesis, therefore,
n-1
|(‘sncoswngn| = %: |ut| = 0(%) ,
t=0 b
It follows from a LLN for dependent random variables that Srl — 0 with probability
one as n— « (and, incidentally, also in mean square).
Since strong convergence is preserved through continuous transformations, we
successively conclude from wn — @ that z_jrn =Fall s yn — v, and the conclusion of the
lemma.

Proof of Theorem 2. We continue to take p+1 even, and note the modifications

of the resuits needed for p+1 odd when we are done. The asymptotic distribution at

\/H(wn- @) is the same as that of -—-%— ann’ which we express in symbols as

N
2 oy
s 0

Nn(e -o) ~
n

Under the assumptions of the theorem the latter, by Liapounov's CLT. tends to be
distributed in large samples as a p+1 dimensional normal random variable with zero

mean vector and covariance matrix equal to
A B =N B =N
1imé<—_Hn§n <——_—-Hn£n
n ’\/I'l g ’\/n

According to the asymptotic orthogonality relations used in the proof of Theorem 1.

!

2]



e

2
coswtcoswt — 20 § .
1

n n .
4 2
—> Zcoswtéj cosw sg . )
n /, J 1)

s

- |

1

-t
I

asn— > forall i,j=0,1,...,q,qt1, provided i and j are not both 0 nor both q+1.

The same limit holds when both cosines are replaced by sines. For i=j=0 (i.e. W= 0)

andi=j=q+1 (i.e, wq+1= 7) we have
n n n n
2\ N c zz Z t, .8
- 3 = [ - -1 -1 =20
LS 256~ Gz (-1) & (-7
t=1 s=1 t=1 s=1
for every n. Finally,
n
2=
4 ) g\ .
= ,/ cosw_téj sinw.s§ = — ) coswtsinwt —~0
n L it j s n / i j
t=4 =4 t=1
without restrictionon i,j =0, 1,...,q, qt1. Thus,

\/H(gpn- ) ~ N0, 2021)

2
where 1 is the p+1 by p+1 identity. This checks with the known result for N(0, o )
2
errors ;viz., that ¢ is N(¢, o Bn) for every n. (Recall Bn ~2/n.)

Since the components of zpn are functions of those of @ we have, by the "delta
method, "

Vo -9~ N©,207P)

2 -1.2 -1/
\/H(yn-y) ~ NO,2¢ M PM )
where

P2=D’D and D=—8£
o
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is the p+1 by p+1 matrix of partial derivatives computed at the true parameter

values (induced by K and the 0's). We have

) )
ac. ad. b -a”
Tl_ = Wﬂ'—: 6“(1/. (1":_%_'&’-2
(Ji ¢ )i ij ] j i +b.2)
J )
od. ac. 2a.b.
_J.:-’_L: 6B B:——ZL%;
Bai ()bi ij " j j TR
] ]
for all i,j=0,1,...,q.qt1, provided we continue to take b0 = qu: 0 and ignore
the variables not involved. We see that
(YO 0
A1
o
A2 1 Bi
D = A =]
i B«
i i
A
q
0 o
L q+1a

Since the inner product between any two different columns of D vanishes, we have

2 2 22 2 2

' 2 2 3 2 2
P =diag[pg: Pys PyseeesPrs Pos Py B = $f, BB W

The typical entry is

29



In other words,

for j=0,1,...,9,q+1 and 0=w0<w1<--- <wq<wq+1=7r.

Finally, we apply the "delta method" once again to get the large sample distribu-
Y1
tion of the estimates of K= — , 0, =-—,...,0 =-— . We have
¥y A o p Yo

- ) A, B sl
~/n(en— g) ~ N@O,2¢"A'M P°M  A)

where

) (K, 91,...,02)
8(70,71,. ,vp)
K 6 8 9 B
T
:-K O '
: |
¢ I
0

where 1 is the pXp identity.
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We can give an alternate expression for the elements of P in terms of the

characteristic polynomial

I o
g(z) =z 017, :

Dividing through by K we have

) iw - s
Putting z = e  and taking squared modulii gives

p
4 iw. 2 \ ikw 2
5186 )% = 1) 7).
X k=0

We therefore have

p
. ik 2 1 iw 2
Z - ) |g(elw)|

K
One can bound these quantities using the fact that g(e )| H | - )\kI satisfies
p o p
1
[Ta-n D = lge™) = k11(1+|kk| )

For an odd number of parameters,
B =24 41 (g =0)

we simply delete the last row of M and the last entry of P.

Proof of the Corollary. From the identities used in the proof of Theorem 1 for

the sum of the first n cosines and sines we have, with

Sl
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] pt
relations
p ptl
cCosw k cos w k= COS W, k cos wk+1-cosw (p+1)uo%w (pt1)

var ]
k=0 k=1
+1

= p— 6 +1-1
ij

for all 1i,j, provided both are not 0 or q+1. From similar ones involving sines, and

cosines and sines, we see that

-1
MM! = 8§

where S was defined in Sec. 2. It is now a simple matter to solve My = § . Setting
1
MO - S IVI ]

we have MOM(’) =1, so that

Y=MISTY = (SM) g .

Premultiplication by the diagonal matrix S multiplies the rows of M. The scalar Y

is the inner product between row k of (SM)’, i.e. column k of SM, and ¥ (k =0,1,..

Thus

CO ( 1)1\’
= — w, + W) +—
Yk Gl +p+1 Z(C cosk i qumk ) m=v) Cq+1
j=1
For p+1 = 2q+1, the last term is deleted.

The covariance matrix Z under Theorem 2(a) becomes

32
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1 3 2.3 2
—3 Z=M{S*PS"M, = M/SP"SM = (PSM)' (PSM)
20

The entry labeled a,b (a,b=0,1,...,p) is the inner product between the corres-

ponding columns of PSM. Thus

1 v\ =
< ~ ab p+1/ <p+1\ [C053w1 cos bw +‘~‘.1na~.u1 s1nbw1]

2
20

. ) q+1 \ +b
[cosaw cosbw + sinaw sinbw (0 1y
< pt 1 / q q q q] \p+1, i

Again, if p+1 = 2q+1, the last term is deleted.

which is the asserted formula.
1 1

The eigenvalues of T are clearly those of 26~ S*P”S? , viz.

2

20 & . 3 2 2 B
cen 207, 207, .

p+1{"0 207 207 Py 2, qu}

The determinant is their product:

p+1
20 2 2 2 VA
d t Z =] S . . 2 “« o . 2 .

= p+1> pO 2p1 p1 2pq pq pq+1

1
/4t NPT o g 4 2
W Y PoPq """ PqPqit

Since

+1 +1 +2
det A=(-K)PT K =(-)PT kP,

we have
2

pt+1 1
4o \> 1 2 2.2 & 2 4 2
(D = & i< A — . (K K sirada, AGES K )
det (A" Z A) 4< =y g 7 (K pg) (Kp,) ( pq) ( AW
Using the formula in terms of the A's we

2 '
The quantities K pj depend only on the 6's.
2
see that K p]_ < 4p.
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